• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

Bulk Quotes Now

Everything you need to know

  • Home
  • Quotes
    • Love Quotes
    • Life Quotes
    • Happiness Quotes
    • Inspirational Quotes
    • Friendship Quotes
    • Birthday Quotes
  • Business
  • Tech
  • Law
  • Life Style
    • Fashion
  • Health
  • home improvement
  • Travel
How to collect Data for Machine Learning?

How to collect Data for Machine Learning?

Filed Under: Tech

There is no concept of data overload for artificial intelligence (AI). The more information you have, the better. The demand for data continues to grow since AI data annotation systems can handle massive volumes of data, and their accuracy improves as data volume increases.

Although data collection appears to be the most superficial phase in the ML process, it necessitates the identification of acceptable databases. As a result, the most typical data sources for an ML model are:

Page Contents

  • 1.     Open-Source Datasets
  • 2.     Web Scraping
  • 3.     Synthetic Datasets
  • 4.     Manual Data Generation
  • Things to remember:

1.     Open-Source Datasets

Using an open-source dataset to collect data for your ML model is the simplest and fastest way to do it. Thousands of open-source datasets are available on the internet, just like coding snippets. They are easy to find, free to use, and incredibly time-efficient to utilize.

One disadvantage of using public datasets is that, while they may appear to have an infinite amount of rich, detailed data, you will almost certainly need to clean it to meet your specific goals.

Some examples of open-source datasets include:

  • Kaggle
  • Amazon
  • UCI Machine Learning Repository
  • Google’s Datasets Search Engine
  • Microsoft
  • Government Datasets
  • Lionbridge AI

2.     Web Scraping

Web scraping programs are used to retrieve data from Amazon, such as product descriptions and prices. These programs automatically or manually hunt for new data, acquiring the new or updated data and saving it for quick access.

There are plenty of excellent web scraping solutions available. Some of these applications involve coding, while others do not. Some are free and open-source, while others are not.

If you decide to utilize web scraping to obtain data, ensure you can collect the information you want. It’s not worth getting into legal problems with a machine learning model. The following are some web scraping tools:

  • Scrapy
  • ProWebScraper
  • ScraperAPI

3.     Synthetic Datasets

When appropriate real-world data is unavailable, synthetic datasets come in handy (or is very hard to obtain). It aids in defining numerous features inside the dataset, such as the scope, format, and level of noise. It also eliminates the possibility of copyright infringement or privacy concerns. It is beneficial if your dataset requires any personally identifying information.

4.     Manual Data Generation

Crowdsourcing is used for manual data collection. Human workers are assigned jobs to collect the appropriate data bits, which are then combined to form the resulting dataset. Crowdsourcing projects range from simple tasks such as image labelling to more sophisticated jobs such as collaborative writing that require numerous phases.

Amazon Mechanical Turk is the most popular crowdsourcing platform, like oworkers where tasks are allocated to human workers who are paid for completing them.

Things to remember:

In any machine learning task, a suitable dataset is essential. Therefore, before you begin the collection, keep the following in mind.

  • A clean dataset with few outliers and noise is preferable.
  • Conduct a thorough literature review of the problem you’re trying to solve. It is to ensure that the relevant (or appropriate, helpful, or discriminative) features (or variables or predictors) that you collect are the most critical part of a machine learning work.

You May Also Like

Version Control and Content Rollback Techniques in Headless CMS
Version Control and Content Rollback Techniques in Headless CMS
Categories: Tech
Edge Computing and the Race for Instant Soccer Bets in the 5G Era
Edge Computing and the Race for Instant Soccer Bets in the 5G Era
Categories: Tech
Adobe Media Encoder Free Download
Adobe Media Encoder Free Download + Full Review
Categories: Tech

About Lena Burkut

Lena Burkut is the Content Strategy Editor, SEO Strategist, life influencer, and the owner of Bulk Quotes Now. He loves to write about love, life, and happiness.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Facebook
  • Instagram
  • Pinterest
  • Twitter
  • YouTube

Search

Advertisement

Advertisements

Footer

Pages

  • About Us
  • Any Inquiry
  • Contact Us
  • Cookies Policy
  • Disclaimer
  • Privacy Policy
  • Terms And Conditions

Categories

Pupolar Posts

I Love My Wife Quotes
Reconnecting With Old Friends Quotes

Copyright © 2025 BulkQuotesNow